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Abstract

Using the notion of vacuum pairs we show how the (square of the) mass matrix of the fermions can
be considered geometrically as curvature. This curvature together with the curvature of space—time,
defines the total curvature of the Clifford module bundle representing a “free” fermion within the
geometrical setup of spontaneously broken Yang—Mills—Higgs gauge theories. The geometrical
frame discussed here gives rise to a natural class of Lagrangian densities. It is shown that the
geometry of the Clifford module bundle representing a free fermion is described by a canonical
spectral invariant Lagrangian density.
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1. Introduction

In a recent paper we showed how bosonic mass is related to the extrinsic geometry of a
chosen vacuum (cf8]). In the present paper we will show how the mass of a fermion is
related to the curvature of the Hermitian vector bundle that represents the (free) fermion
in question. The geometrical context we work with is that of Clifford module bundles and
operators of Dirac type. Using the notion of vacuum pairs we will show how the fermionic
mass matrix permits decomposition of the fermion bundle into the Whitney sum of certain
Hermitian (line) bundles representing (almost) free fermions of specific mass. A natural
class of non-flat connection exists on this type of bundle which is defined by the space—time
metric together with the mass of the fermion. The corresponding Dirac opgfatisr
the geometrical analogue of Dirac’s first-order operafor in that has been introduced
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to relativistically describe the dynamics of a free fermion of masdVe show how a
(linear) fluctuation of the vacuum yields the Dirac-type operd@grusually referred to as
Dirac—Yukawa operator.

The basic question addressed in this paper is how to understand the notion of fermionic
mass from a geometrical perspective. Interestingly, this question is tied to several other
basic questions like, for instance, how to understand Dirac’s famous first-order operator as
a“true” Dirac operator. Or, since the notion of mass is related to the notion of a “free” particle
(i.e. to a dynamically closed systéjnhow one can understand the notion of “freeness”
within the geometrical setup of Yang—Mills gauge theories. Another question along this
line of thought is how one can geometrically understand what is usually referred to as
“particle multiplet”. Usually, elementary particles are described by (“quantized”) figlds
that are defined on space—time without referring to a geometrical description of the
particles themselves. Moreover, it is assumed that some of these fields actually constitute a
“fermion multiplet” with respect to some “internal symmetry group:’ As is well-known,
for instance, in the case of the Standard Model of particle physics the fields representing a
(left-handed) electron and a (left-handed) neutrino together build a (left-handed) fermion
doublet with respect to the symmetry group @WUx U(1) of the electroweak interaction.
Thus, if we believe in the Standard Model, neither an electron nor a neutrino itself can
actually be regarded as a fundamental particle. Moreover, electromagnetism itself turns out
to be an effective interaction only. Consequently, the fieldescribing the fermion doublet,

e.g., of an electron and a neutrino is considered to decomposE iatow, ¥>). The gauge
symmetry of the electroweak interaction then manifests it selves in the arbitrariness of which
component off is identified with the field describing, e.g., an electron. In other words, one
usually has to choose a gauge in order to identify, for instaficeyith the electron field.
However, such a description seems to be unsatisfying since on the one hand the choice of
a gauge is a purely mathematical operation (i.e. it cannot be achieved experimentally). On
the other hand, there is no doubt that an electron exists in nature as an object of its own. It
thus cannot depend on some choice of gauge.

From a purely mathematical point of view the space wherakes its values forms a
specific representation of the symmetry grampn question. For instance, in the case of
the electroweak group this spads identified withC?. Then, the fermionic mass matrix
ME provides a natural decomposition of this space into the eigenspaces of the mass matrix.
In the case of; = SU(2) x U(1) one then obtains

C%~ Welectron® Wneutrino 1)

This decomposition breaks the original gauge symmetry since the fermionic mass matrix
ME does not, in general, lie in the commutant of the symmetry gt@ugowever, the point
is that the decompositiofil) does not refer to any specific gauge. The decomposition is
“natural” with respect to the additional piece of input that comes from the fermionic mass
matrix. However, in order to put the decomposit{@jin an appropriate geometrical context

1 It is well-known that, e.g., in the context of the strong interaction there is no unique definition of mass of the
quarks.

2 Here, only one generation of left-handed fermions is taken into account in order to simplify the discussion.
The general case is discussed hereafter.
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without assuming the triviality of the underlying gauge bundle we first have to globalize
the fermionic mass matrix. This will be done by using vacuum pairs similar to the case of
the bosonic mass matrices (see loc sit). As a consequence we will see that the mass matrix
has a simple geometrical interpretation in terms of curvature and that Dirac’s operator can
in fact be considered as a Dirac-type operator.

2. Orbit bundles and vacuum pairs

To get started we first summarize the notion of vacuum pairs that has been introduced in
[8]. For this letP(M, G) be a smooth principaI}-bundIePi’;M over a smooth orientable
(pseudo)Riemannian (spin-) manifald1, gm) of dimension diniM) = 2n. Here,G is
a semi-simple compact real Lie group with Lie algebra Gig(The corresponding gauge

groupisdenoted by. LetGp—H>Aut((CNH) be a unitary representation@f Also, letCM ER

be a smoothG-invariant function that is bounded from below. Moreover, it is assumed
that its Hessian is positive definite transversally to the orbits of minima. WeVgah
general Higgs potentialThe triple (P(M, G), pH, Vi) defines the geometrical data of a
Yang—Mills—Higgs gauge thearWe call the Hermitian vector bundég:

TH En = Pxp, CY > M, 3=[(p.2)] > n(p). 2

the Higgs bundlewith respect to the above given data. It is assumed to geometrically
represent the Higgs boson. Correspondingly, a state of the Higgs boson is geometrically
represented by a section of the Higgs bundle.

Each minimumzg € CM defines a sub-bundle of the Higgs bundle. For this, let
orbit(zg) ¢ CMH andI(zg) C G be the orbit and the isotropie group of the minimum.
We call the fiber bundl€orit(zg) :

Torp: Orbit(zg) =: P X py,, Orbit(zg) — M 3)

the orbit bundlewith respect to the data defining a Yang—Mills—Higgs gauge theory (see
above). Hereporh =: pH|orbit(zo) -

Notice that, SinCé&orbitzy) C &H, every sectioV € I'(€orbitz,)) Of the orbit bundle can
be also considered as a section of the Higgs bundle. There is a one-to-one correspondence
between the sectionsand “H-reductions” ofP(M, G), whereH >~ I(zp). More precisely,
let H be the unique subgroup of that is similar to the isotropie group of the minimum
Then, every sectiol’ € &qmit(z,) UNiquely corresponds to a principAtbundle Q(M, H)

together with an embeddinQ—‘> P, such that the following diagram commutes (see, for
instance, Chapter 1, Proposition 5.4%)

Q — p

Tq e STe K

./M";rb T'bl;t(Z())
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Note thatP—> Orbit(zo) is a principalH-bundle, where(pg) =: [(p, p(g)Z0)] denotes the
canonical projection.

We call a sectiorV of the orbit bundle azacuum sectioand (Q, ¢) the corresponding
vacuumwith respect to the minimurey. We denote byH the gauge group that is defined
by the vacuum(Q, ¢) and call it theinvariance groupof the vacuum. A Yang—Mills—Higgs
gauge theory is calledpontaneously brokelny a vacuum(Q, v) if the invariance group
of the latter is a proper subgroup of the original gauge grgufhe gauge theory is
calledcompletely brokety the vacuum if the appropriate invariance group is trivial. We
call a vacuum(Q, v) trivial if Q(M, H) is equivalent to the trivial principaH-bundle

M x H™ M. Notice that even a trivial gauge bund®M, G) may have nontrivial vacua.

A connectiond onP(M, G) is calledreduciblewith respect to a given vacuu¢®, «) (or
compatiblewith respect to the vacuum sectidhif (* A is a connection oi®(M, H). Let,
respectively,A(éq) and I'(éy) be the affine set of all associated connections on the Higgs
bundle and the module of sections of the Higgs bundle. A Yang—Mills—Higgg@aw)
A(&n) x I(&n) is called avacuum pairif V is a vacuum section an@ corresponds to a
flat connection orP(M, G) that is compatible with the vacuum section. Clearly, a vacuum
pair minimizes the energy functional that corresponds to the Yang—Mills—Higgs action with
respect to the datéP(M, G), pH, VH). In particular, a vacuum section corresponds to
a ground state of the Higgs boson. A vacuum ga&lr V) geometrically generalizes the

canonical vacuum pai, zp) in the case of the trivial gauge bundid x G M. In fact,
it can be shown that in the case of a simply connected space—time there is at most one
vacuum pair to the orbit of a given minimumg apart from gauge equivalence. Moreover,
this pair is gauge equivalent to the canonical vacuum¥tairgeneral, however, the data
(P(M, G), pn, Vu) may give rise to gauge inequivalent vacua even in the case of only one
nontrivial orbit of minima.

We have summarized the basic geometrical notion that we need to globalize the fermionic
mass matrix. This will be discussed in the next section.

3. Clifford module bundles and the fer mionic mass matrix

Having chosen a spin structug&we denote the appropriate spinor bundle&gy Let

GﬁEAut((CNF) denote a second unitary representatio;ofl he corresponding associated
Hermitian vector bundler is defined by

g EE =:P><pF(CNF—>M. (4)
We then call the twisted spinor bundle
Er =1Es® LF (5)

3 Here, a minimung is considered as the vacuum sectimmﬂi/\/r x orbit(zg), x — (x, Zp) andd is the
covariant derivative with respect to the trivial connection. Indeed, in physics the mechanism of spontaneous
symmetry breaking refers to the canonical vacuum pdizg). This is consistent for in particle physics the
common model of space—time is that(@1, gu) ~ RL3.
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thefermion bundlewith respect to the datgP(M, G), pg, S). It geometrically represents
a particle of spin one-half. In what follows we will assume that the fermion bundle is also
Z-graded with respect to the “inner degrees of freedom”ie= {rL @ ¢FR-

On such &,-graded fermion bundle there exists a distinguished class of first-order differ-
ential operators callddirac operators of simple typef. [1,6]). More precisely, lefc| be the
Clifford bundle with respect teM, gm). The fermion bundle forms a natural left module of
the Clifford bundle. The corresponding action is denotegt iy an operator of Dirac type
we mean any odd first-order differential operafbacting on the module of sectiofi¥&r)
suchthai?is ageneralized Laplacian, i.®[[D, f]] = £2gm (df, df) forall f € C*°(M)

(see, e.g., Chapter 3.3[2]). Let D(&F) be the affine set of all operators of Dirac type which
are compatible with the Clifford actiop, i.e. [D, f] = y(df). The appropriate vector space

is given by2°(M, End™(€)), where€ =: S® Er is the total space of the fermion bundle.
We also denote byl(&r) the affine set of all (associated) connectionggrmhe correspond-

ing vector space is given kgl (M, End" (£)). In general, one haB(&r) ~ A(gr)/Ker(y).

Thus, there is a whole clasa] of connections on the fermion bundle corresponding to each
Dirac type operatob. However, there is a distinguished class of connections on the fermion
bundle that is constructed as follows: an operdos D(&F) is called of simple type if its
Bochner—Laplaciamp is defined by a Clifford connection € Aci(ér) C A(&r). Here,
Aci(&r) denotes the affine subset of Clifford connections on the fermion bundle. They are
characterized by the covariant derivatiiasthat fulfil [0a x, y(a)] = y(ag'a) for all sec-
tionsa € I'(c)) and tangent vector fields € I'(zy). Here,d% is the covariant derivative

that is defined by the canonical connection on the Clifford buggdjeIn the case of a
twisted spinor bundle Clifford connections are tensor product connections and thus are pa-
rameterized by Yang—Mills connections gn It can be shown thab is of simple type iff it
reads (cf[1,6])

D=ips=Hr+r:90. 6)

whereys is the grading operator o and¢g € 2°(M, End™ (Eg)).

Of course, any twisted Spin-Dirac operafgr=: y o 95 is of simple type. However, the
most general Dirac operator of simple type on the fermion bundle (more general: on any
“twisted” Clifford module bundle) is given by6). Notice that these more general Dirac
operators exist only ifr is Zo-graded. The connection class of a Dirac operator of simple
type has a natural representative. The corresponding covariant derivative reads

A =0A+EAN(5Q ). (7)

Here,é € 2Y(M, End (£)) is the canonical one form that fulfils the following criteria:
(a) it is covariantly constant with respect to every Clifford connection; (b) it defines a right
inverse of the Clifford actiony (cf. [6]).

Definition 3.1. Let (P(M, G), pn, V1) be the data of a Yang—Mills—Higgs gauge theory
and let&g be the fermion bundle with respectt®(M, G), pr, S). A linear mapping

Gy : I'(6n) — I'Ggpg-tr)s = ¢y =Gy (p), 8
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such '[ha'[Gy(ga)T = —Gy(p) is called a “Yukawa mapping”. A Dirac operator of simple
type

Dy = fa +15® by 9

is called a “general Dirac—Yukawa operator”. Moreoverd, ¢) is a vacuum that sponta-
neously breaks the gauge symmetry, then the Hermitian section

—iD=: —iGy(V) (10)

[ 0 Mr
—|D:<M;r O) (11)

is called the “fermionic mass matrix”.

Clearly, a necessary condition for the existence of a Yukawa mapping is that the repre-
sentationpy and the fermionic representatigp are not independent of each other. For
instance, in the case of the (minimal) Standard Model the existen@ isfequivalent to
the validity of the well-known relations between the “hyper-charges” of the leptons, the
quarks and the Higgs boson (see, §d). The constants which parameterize the mapping
Gy are usually referred to as “Yukawa coupling constants”.

In this section we have seen how the notion of vacuum (pairs) can be used to consider the
fermionic mass matrix as a globally defined (odd) operator acting on the states of a fermion
thatis geometrically defined by the d&f&(M, G), pr, S). In the next section we will show
how the fermionic mass matri® (together with the (pseudo) metgg ) defines a canonical
connection on the “reduced” fermion bundle. A necessary condition for this connection to be
flat is that the (almost) “free fermions” are massless. Moreover, the fermionic mass matrix
will provide us with a geometrical interpretation of the “minimal coupling” in terms of
the physically intuitive notion of “fluctuating vacua”. The main feature of this geometrical
interpretation is that, besides the Yang—Mills boson, the minimal coupling naturally includes
the gravitational field and the Higgs boson.

4. Dirac-Yukawa operators as fluctuating vacua

The Yukawa mappin¢B) permits us to consider a section of the Higgs bundle (i.e. a state
of the Higgs boson) as an (odd) endomorphism acting on the fermion bundle. In particular,
a vacuum paif®, V) defines a Dirac—Yukawa operator

dp=1+r®D (12)

acting on sections of theeduced fermion bundlg: red =: s ® ¢F.red, With ¢ req defined
by

7Fred - EFred = O X g red CcNF M, 3=[@q, 2]~ mo(q). (13)
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Here,pr red =: prlH. Notice thatg req >~ &r. Thus, a section of the reduced fermion bundle
can be considered as a state of the fermion that refers to a particular vacuurft (pair).

As a consequence, a vacuum pair defines a natural non-flat connection on the reduced
fermion bundle. This connection is defined by ieac—Yukawa operator in the vacuum
state(12). The appropriate covariant derivative reads

op=:0+E&A(5RD). (14)
The (total) curvature o8 reg, Which is defined bygm, ©, V), is given by
Fp=R+métnE, (15)

whereR denotes the lifted (pseudo)Riemannian curvature tensor with respggt amd
img =: y5 ® D.
The relative curvaturé-‘f)/s = m,2:§ A & on the reduced fermion bundle is thus defined
by the (square of the) mass matrix of the fermion with respect to the chosen vacuum (pair).
Like in the case of the bosonic mass matrices we have the following lemma.

Lemma 4.1. The spectrum of the fermionic mass matrix is constant and only depends on
the orbit of the minimunzg of a general Higgs potential. Moreovghe mass matrix lies
within the commutant of the invariance group of the vacuum chosen. Heneceeduced
fermion bundle splits into the Whitney sum of the eigenbundles of the fermionic mass matrix
i.e

SF,red = S? éF(mz)’ (16)

m2espegm?)
whereg_, 2, =: Er Lo O & gt -

Proof. The argument is very much the same as in the case of the bosonic mass matrices.
It relies on the fact that, independently of the vacu(®) ), the corresponding vacuum
section read¥(x) = [(t(g), 20)] |q€n51(x). Thus, the spectrum of the fermionic mass matrix

is independent of € M. Of course, if two minimay, z;, of a given general Higgs potential

Vy are on the same orbit, then the corresponding vacua are equivalent. As a result, the
spectrum oin,zz only depends on the orbit of some minimum. By the very construction of
the fermionic mass matrix we havB] pr(h)] = Oforallh € H, suchtha#d ~ I(zp). Since

me € 2%(M, End™(€)) is constant on the reduced fermion bundle one can decompose the

latter with respect to the eigenbundlesM,EM,: andM,:M,:r. O

Forfixedm? e specm?) the Clifford module bundlé_z, is regarded as the geometrical
analogue of aralmost free fermion of mass.Here, “almost” refers to the circumstance

4 This is analogous to the reduced tangent bundle of@nareduction of the frame bundle g#: a local frame
corresponds tor2locally linear independent sections of the tangent bungli¢hat are orthonormal with respect
to the chosen reduction.

5 We would like to point out that all of this can also be defined without assuming the existence of a spin structure.
Thus, it is the gravitational field together with the vacuum (pair) that counts and not so much the spin sfucture
At least, this holds true as long as the notion of anti-particles is not taken into account.
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that neither the connectio®, nor the reduced representatipfeq is trivial, in general.
Therefore, a non-trivial vacuum together with the topology of space-time may give rise
to a non-trivial holonomy group analogously to the well-known Aharonov—-Bohm effect.
Notice that, if the spectrum of the fermionic mass matrix is non-degeneratedghgn
decomposes into the Whitney sum of the tensor product of the spinor bundle and appropriate
Hermitian line bundles.

In what follows we will rewrite a general Dirac—Yukawa operator in terms of a “fluctua-
tion” of the vacuum at hand. For this let us call to mind the definition of the lattefgf.

Let (®, V) be a vacuum pair that spontaneously breaks a Yang—Mills—Higgs gauge the-
ory that is defined by the datgP(M, G), pn, Vu). We call a one-parameter family of
Yang-Mills—Higgs pairgA;, ¢;) € A(én) x I'(¢n) (0 < ¢ < 1) afluctuation of the vacuum
if there is a Yang—Mills—Higgs paii4, ¢), such thatd; = ©® + (A — ®) andy; = V + rp,
whereA is supposed to be associated to a non-reducible connecti®ioh G) andy is
supposed to be in the “unitary gauge”, i&p € I'(5n phys). Here, we make use of the fact
that the reduced Higgs bundle, when considered as a real vector bundle, decomposes into
the Whitney sum

EH,red = fG S éH,phyS (17)

of two real sub-vector bundles representing the Goldstone and the physical Higgs boson
(cf. loc sit).

By identifying a connection with its connection form we may write a fluctuation of the
canonical Dirac—Yukawa operaty as follows:

Dy, = #p + tdq, (18)

where the “fluctuation” readsﬁﬂ = Y(A — O) + 5 ® Gy(¢). We stress that the zero
order operatoDy — §,, defines a fluctuation of the vacuum iff the unitary gauge exists.
This holds true, e.g., in the case of rotationally symmetric Higgs potentials, like in the
(minimal) Standard Model (see again loc sit). Therefore, every Dirac—Yukawa operator on
the fermion bundle can be regarded as a fluctuation of the canonical Dirac—Yukawa operator
on the reduced fermion bundle, provided that the unitary gauge exists. Notice that either
of the two terms on the right-hand side(@B) transform gauge covariantly with respect to
the invariance group of the vacuum. The sum of both, however, is covariant with respect
to the original gauge grou@. In other words: the fluctuatiofly of the vacuum makes the
canonical Dirac—Yukawa operaty on the (reduced) fermion bundle al§ecovariant.

Since the Dirac—Yukawa operator

idp =i —me (19)

is the geometrical analogue of Dirac’s original first-order operater i, the fluctuation

(18) might be regarded as a geometrical variant of what is usually referred to as “minimal
coupling”. In the case at hand, however, the minimal coup{k®) naturally includes the
gravitational field and the states of the Higgs boson. We stress that on the basis of general
relativity (without an a priori cosmological constant) it would be inconsistent to assume
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a non-trivial fermionic mass matrix together with a trivial gravitational ffelhus, a
non-trivial ground state of the Higgs boson yields a non-trivial gravitational field, in general.
In this section we have presented a physically intuitive interpretation of a geometrically
distinguished class of Dirac-type operatér§his interpretation in turn permits a differ-
ent geometrical interpretation of minimal coupling with the basic feature of including the
Higgs boson and the gravitational field. From a geometrical perspective the back and forth
of both interpretations may be most transparently summarized by the canonical isomor-
phism between the fermion bundle and the reduced fermion bundle and the fact that the
latter decomposes into the eigenbundles of the fermionic mass matrix. Of course, these
identifications depend on the vacuum (pair) only up to gauge equivalence.
So far the three datasdis1, gv), (P(M, G), pu, Vi) and(P(M, G), pr, S) have been
assumed to be given. Moreover, these sets are connected only by a Yukawa nf@ping
our final section we want to indicate how to connect these sets by postulating a “universal
Lagrangian density” that is naturally defined D).

5. Dirac potentialsand L agrangians

In this paper we consider a fermion as a geometrical object that is defined by the data
(P(M, G), pr, S), where(M, gm) is supposed to be given. With respect to this setup there
is a distinguished class of first-order differential operators acting on the states of the fermion.
As an additional input we considered the dgaM, G), pH, Vi) thatgeometrically defines
a Yang—Mills—Higgs gauge theory. In order to combine both datasets we introduced the
Yukawa mapping and thereby a specific class of Dirac operators of simple type called
general Dirac—Yukawa operators. In fact, the Yukawa mapping generalizes what is known
in physics as “Yukawa coupling”. If the Yang—Mills—Higgs gauge theory is spontaneously
broken, then the fermion decomposes into almost free fermions. Each of these fermions
is geometrically represented by a non-flat Clifford module bundle, where the curvature is
determined by the gravitational field together with the mass of the free fermion in question.
However, since the (pseudo) metric structure has been fixed right from the beginning, these
two contributions to the total curvature of the fermion bundle are thus far independent of
each other. Of course, when seen from a physical perspective, this seems unsatisfying. One
may expect that the masses of the fermions give a contribution to the gravitational field. The
most natural way to achieve this is the following construction, which naturally incorporates
the dynamics of the gravitational field in the geometrical picture presented here. For this
we introduce the followinginiversal Lagrangian mapping

L : D) — 22 (M), D > xtr Vp. (20)

We call the zero-order operattp =: D?°—Ap € 2°(M, End(€)) theDirac potentialasso-
ciated withD. Itis fully determined by the Dirac-type operator in question and can explicitly

6 Of course, this should not be confounded with the common assumption, e.g., in particle physieslifible
contribution of the gravitational field.

7 For instance, Dirac operators of simple type are fully characterized by their Bochner—Lichnerowicz—
Weitzenb6ck decomposition, see, 4. Moreover, as already mentioned they constitute the biggest class of
Dirac-type operators such that their connection classes have a canonical representative.
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be calculated, for instance, by using the generalized Bochner—Lichnerowicz—Weitzenbdck
decomposition formula (see Eq. (3.13)[1}). We mention that the Dirac potential gener-
alizes the Higgs potential, for it can be shown that (at least with respect to the Euclidean
signature) the Lagrangian of a Yang—Mills—Higgs gauge theory can be recovered from an
appropriate Dirac-type operator (46@). In this case, however, one has to take into account
anti-particles as well (sdé&]).

In the case of the canonical Dirac—Yukawa opergjpone obtains the following La-
grangian density:

LFp) = str(Grm + md). (21)

Here,rm € C*°(M) is the scalar curvature with respect to an appropriga@®reduction

of the (oriented) frame bundle g¥1. As a consequence, space—time must be an Einstein
manifold, where the gravitational field is now dynamically determined by the masses of
the almost free fermions. Moreover, the mass of an almost free fermion also determines its
curvature. In other words: in the ground state both the geometry of space—time and of the
(reduced) fermion bundle is determined by the fermionic masses. We summarize this by
saying that the “fermionic vacuum” gives rise to a Lagrangian of the form

L@p) ~ (mE)um (22)

with (m2) =: (1/Ng) Y1°, m? and um the appropriate volume form determined by the
fermionic mass.

Of course, since the Lagrangié2®)is fully determined by the spectrum of the fermionc
mass matrix, it is invariant with respect to both the gauge group of general relativity (i.e. the
group of volume preserving automorphisms of the oriented frame bundle) and to the invari-
ance group of the vacuum. Moreover, it only depends on the orbit of some minimum and
not of the vacua with respect to this minimum. Therefore, the Lagrangian of the fermionic
vacuum is indeed a spectral invariant.

6. Summary and outlook

We have presented a geometrical setup permitting a geometrical interpretation of the
fermionic masses. Moreover, we have shown how the fermionic mass determines the ge-
ometry of space—time and that of the Clifford module bundle which geometrically represents
almost free fermions. The fact that the spectral invar{28) of the fermionic vacuum is
proportional to the mean value of the fermionic masses is clearly due to the circumstance
that the fermion bundle breaks into a Whitney sum with respect to any given vacuum.
This splitting geometrically describes what is usually referred to as “particle multiplet”.
With respect to a “linear fluctuation” of a vacuum (pair) the canonical Dirac—Yukawa op-
erator becomes covariant with respect to the full gauge group. However, in this case the
corresponding canonical Lagrangian determines neither the dynamics of the Higgs boson,
nor that of the gauge boson. Moreover, the appropriate Lagrangian reduces to that of the
fermionic vacuum. For this it might be more natural to consider a “quadratic fluctuation”
of a vacuum. As we have mentioned before, in this case the Lagrangian mapping yields (up
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to a constant) the bosonic Lagrangian of the Standard Model with gravity included. No-
tice that for dim(M) = 4 there are no “higher fluctuations” of the vacuum. Moreover, by
geometrically incorporating the notion of anti-particles (i.e. a real structure) the quadratic
fluctuations give rise to the same dynamics for the fermions as the linear fluctuations of
the vacuum do. This has been discussed, e [§] ifor the case of the Euclidean signature.
The main reason for using the Euclidean signature was that we are dealing with a univer-
sal action instead of a Lagrangian. However, when gravity is taken into account, the latter
seems more appropriate since a Lagrangian is a density and thus a purely local object. And
because it is a density, the signatureggf does not matter. Moreover, Clifford module
bundles always refer to some Clifford bundle oyef. But this in turn obviously refers to
some chosen Of-reduction of the frame bundle d¥1, i.e. to some fixegy . However,
whengy is physically interpreted as a gravitational field, it cannot be fixed a priori, for it
has to satisfy, e.g., Einstein’s equation. This is obviously a dilemma one always has to face
in if gravity is taken into account. The philosophy of the paper at hand with respect to the
Lagrangian mappin(R0)is as follows: the field equations determined by the corresponding
Lagrangian are considered as “constraints” of how to glue together the local pieces to give
rise to global geometrical objects like, e.g., the fermion bundle. We consider this interpre-
tation of the Euler—Lagrange equations to hold true, especially in the case of the Einstein
equation.

Interestingly, there are certain parallels between the geometrical setup presented here
and what is called “almost commutative models” in the literature. In particular, the canon-
ical Dirac—Yukawa operator corresponds to the “total Dirac operator"Z2and the “in-
ternal Dirac operator” in the Connes—Lott description of the Standard Model within the
frame of A. Connes’ non-commutative geometry (see, Bpor [4]). Like in the case
of the Connes—Lott model one also has a “fermion doubling” in the geometrical frame
presented here. This still has to be carefully analyzed, for we can perhaps work with the
physical signature ofy. Concerning quantization it seems challenging to try to under-
stand what it geometrically means to “quantize” the above-mentioned constraints. This,
of course, is still an open question and has not been addressed in this paper. Instead, the
main objective here was to explore the geometrical meaning of the fermionic “mass without
mass”.
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