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(Fermionic) mass meets (intrinsic) curvature
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Abstract

Using the notion of vacuum pairs we show how the (square of the) mass matrix of the fermions can
be considered geometrically as curvature. This curvature together with the curvature of space–time,
defines the total curvature of the Clifford module bundle representing a “free” fermion within the
geometrical setup of spontaneously broken Yang–Mills–Higgs gauge theories. The geometrical
frame discussed here gives rise to a natural class of Lagrangian densities. It is shown that the
geometry of the Clifford module bundle representing a free fermion is described by a canonical
spectral invariant Lagrangian density.
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1. Introduction

In a recent paper we showed how bosonic mass is related to the extrinsic geometry of a
chosen vacuum (cf.[8]). In the present paper we will show how the mass of a fermion is
related to the curvature of the Hermitian vector bundle that represents the (free) fermion
in question. The geometrical context we work with is that of Clifford module bundles and
operators of Dirac type. Using the notion of vacuum pairs we will show how the fermionic
mass matrix permits decomposition of the fermion bundle into the Whitney sum of certain
Hermitian (line) bundles representing (almost) free fermions of specific mass. A natural
class of non-flat connection exists on this type of bundle which is defined by the space–time
metric together with the mass of the fermion. The corresponding Dirac operator/∂D is
the geometrical analogue of Dirac’s first-order operator i/∂ − m that has been introduced
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to relativistically describe the dynamics of a free fermion of massm. We show how a
(linear) fluctuation of the vacuum yields the Dirac-type operatorDY usually referred to as
Dirac–Yukawa operator.

The basic question addressed in this paper is how to understand the notion of fermionic
mass from a geometrical perspective. Interestingly, this question is tied to several other
basic questions like, for instance, how to understand Dirac’s famous first-order operator as
a “true” Dirac operator. Or, since the notion of mass is related to the notion of a “free” particle
(i.e. to a dynamically closed system1), how one can understand the notion of “freeness”
within the geometrical setup of Yang–Mills gauge theories. Another question along this
line of thought is how one can geometrically understand what is usually referred to as
“particle multiplet”. Usually, elementary particles are described by (“quantized”) fieldsΨ

that are defined on space–timeM without referring to a geometrical description of the
particles themselves. Moreover, it is assumed that some of these fields actually constitute a
“fermion multiplet” with respect to some “internal symmetry group”G. As is well-known,
for instance, in the case of the Standard Model of particle physics the fields representing a
(left-handed) electron and a (left-handed) neutrino together build a (left-handed) fermion
doublet with respect to the symmetry group SU(2) × U(1) of the electroweak interaction.
Thus, if we believe in the Standard Model, neither an electron nor a neutrino itself can
actually be regarded as a fundamental particle. Moreover, electromagnetism itself turns out
to be an effective interaction only. Consequently, the fieldΨ describing the fermion doublet,
e.g., of an electron and a neutrino is considered to decompose intoΨ = (Ψ1, Ψ2). The gauge
symmetry of the electroweak interaction then manifests it selves in the arbitrariness of which
component ofΨ is identified with the field describing, e.g., an electron. In other words, one
usually has to choose a gauge in order to identify, for instance,Ψ1 with the electron field.
However, such a description seems to be unsatisfying since on the one hand the choice of
a gauge is a purely mathematical operation (i.e. it cannot be achieved experimentally). On
the other hand, there is no doubt that an electron exists in nature as an object of its own. It
thus cannot depend on some choice of gauge.

From a purely mathematical point of view the space whereΨ takes its values forms a
specific representation of the symmetry groupG in question. For instance, in the case of
the electroweak group this space2 is identified withC

2. Then, the fermionic mass matrix
MF provides a natural decomposition of this space into the eigenspaces of the mass matrix.
In the case ofG = SU(2) × U(1) one then obtains

C
2 � Welectron⊕ Wneutrino. (1)

This decomposition breaks the original gauge symmetry since the fermionic mass matrix
MF does not, in general, lie in the commutant of the symmetry groupG. However, the point
is that the decomposition(1) does not refer to any specific gauge. The decomposition is
“natural” with respect to the additional piece of input that comes from the fermionic mass
matrix. However, in order to put the decomposition(1) in an appropriate geometrical context

1 It is well-known that, e.g., in the context of the strong interaction there is no unique definition of mass of the
quarks.

2 Here, only one generation of left-handed fermions is taken into account in order to simplify the discussion.
The general case is discussed hereafter.
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without assuming the triviality of the underlying gauge bundle we first have to globalize
the fermionic mass matrix. This will be done by using vacuum pairs similar to the case of
the bosonic mass matrices (see loc sit). As a consequence we will see that the mass matrix
has a simple geometrical interpretation in terms of curvature and that Dirac’s operator can
in fact be considered as a Dirac-type operator.

2. Orbit bundles and vacuum pairs

To get started we first summarize the notion of vacuum pairs that has been introduced in

[8]. For this letP(M,G) be a smooth principalG-bundleP
πP→M over a smooth orientable

(pseudo)Riemannian (spin-) manifold(M, gM) of dimension dim(M) = 2n. Here,G is
a semi-simple compact real Lie group with Lie algebra Lie(G). The corresponding gauge

group is denoted byG. LetG
ρH→Aut(CNH)be a unitary representation ofG. Also, letCNH

VH→R

be a smoothG-invariant function that is bounded from below. Moreover, it is assumed
that its Hessian is positive definite transversally to the orbits of minima. We callVH a
general Higgs potential. The triple(P(M,G), ρH, VH) defines the geometrical data of a
Yang–Mills–Higgs gauge theory. We call the Hermitian vector bundleξH:

πH : EH =: P ×ρH C
NH →M, Z = [(p, z)] �→ π(p), (2)

the Higgs bundlewith respect to the above given data. It is assumed to geometrically
represent the Higgs boson. Correspondingly, a state of the Higgs boson is geometrically
represented by a section of the Higgs bundle.

Each minimumz0 ∈ C
NH defines a sub-bundle of the Higgs bundle. For this, let

orbit(z0) ⊂ C
NH and I(z0) ⊂ G be the orbit and the isotropie group of the minimum.

We call the fiber bundleξorbit(z0):

πorb: Orbit(z0) =: P ×ρorb orbit(z0) →M (3)

the orbit bundlewith respect to the data defining a Yang–Mills–Higgs gauge theory (see
above). Here,ρorb =: ρH|orbit(z0).

Notice that, sinceξorbit(z0) ⊂ ξH, every sectionV ∈ Γ(ξorbit(z0)) of the orbit bundle can
be also considered as a section of the Higgs bundle. There is a one-to-one correspondence
between the sectionsV and “H-reductions” ofP(M,G), whereH � I(z0). More precisely,
letH be the unique subgroup ofG that is similar to the isotropie group of the minimumz0.
Then, every sectionV ∈ ξorbit(z0) uniquely corresponds to a principalH-bundleQ(M, H)

together with an embeddingQ
ι→P , such that the following diagram commutes (see, for

instance, Chapter 1, Proposition 5.6 in[5])
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Note thatP
κ→Orbit(z0) is a principalH-bundle, whereκ(pg) =: [(p, ρ(g)z0)] denotes the

canonical projection.
We call a sectionV of the orbit bundle avacuum sectionand(Q, ι) the corresponding

vacuumwith respect to the minimumz0. We denote byH the gauge group that is defined
by the vacuum(Q, ι) and call it theinvariance groupof the vacuum. A Yang–Mills–Higgs
gauge theory is calledspontaneously brokenby a vacuum(Q, ι) if the invariance group
of the latter is a proper subgroup of the original gauge groupG. The gauge theory is
calledcompletely brokenby the vacuum if the appropriate invariance group is trivial. We
call a vacuum(Q, ι) trivial if Q(M,H) is equivalent to the trivial principalH-bundle

M×H
pr1→M. Notice that even a trivial gauge bundleP(M,G) may have nontrivial vacua.

A connectionA onP(M,G) is calledreduciblewith respect to a given vacuum(Q, ι) (or
compatiblewith respect to the vacuum sectionV) if ι∗A is a connection onQ(M,H). Let,
respectively,A(ξH) andΓ(ξH) be the affine set of all associated connections on the Higgs
bundle and the module of sections of the Higgs bundle. A Yang–Mills–Higgs pair(Θ,V) ∈
A(ξH) × Γ(ξH) is called avacuum pairif V is a vacuum section andΘ corresponds to a
flat connection onP(M,G) that is compatible with the vacuum section. Clearly, a vacuum
pair minimizes the energy functional that corresponds to the Yang–Mills–Higgs action with
respect to the data(P(M,G), ρH, VH). In particular, a vacuum sectionV corresponds to
a ground state of the Higgs boson. A vacuum pair(Θ,V) geometrically generalizes the

canonical vacuum pair(d, z0) in the case of the trivial gauge bundleM×G
pr1→M. In fact,

it can be shown that in the case of a simply connected space–time there is at most one
vacuum pair to the orbit of a given minimumz0 apart from gauge equivalence. Moreover,
this pair is gauge equivalent to the canonical vacuum pair.3 In general, however, the data
(P(M,G), ρH, VH) may give rise to gauge inequivalent vacua even in the case of only one
nontrivial orbit of minima.

We have summarized the basic geometrical notion that we need to globalize the fermionic
mass matrix. This will be discussed in the next section.

3. Clifford module bundles and the fermionic mass matrix

Having chosen a spin structureS we denote the appropriate spinor bundle byξS. Let

G
ρF→Aut(CNF) denote a second unitary representation ofG. The corresponding associated

Hermitian vector bundleζF is defined by

πF : EF =: P ×ρF C
NF →M. (4)

We then call the twisted spinor bundle

ξF =: ξS ⊗ ζF (5)

3 Here, a minimumz0 is considered as the vacuum sectionM
z0→M × orbit(z0), x �→ (x, z0) andd is the

covariant derivative with respect to the trivial connection. Indeed, in physics the mechanism of spontaneous
symmetry breaking refers to the canonical vacuum pair(d, z0). This is consistent for in particle physics the
common model of space–time is that of(M, gM) � R1,3.
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the fermion bundlewith respect to the data(P(M,G), ρF,S). It geometrically represents
a particle of spin one-half. In what follows we will assume that the fermion bundle is also
Z2-graded with respect to the “inner degrees of freedom”, i.e.ζF = ζF,L ⊕ ζF,R.

On such aZ2-graded fermion bundle there exists a distinguished class of first-order differ-
ential operators calledDirac operators of simple type(cf. [1,6]). More precisely, letξCl be the
Clifford bundle with respect to(M, gM). The fermion bundle forms a natural left module of
the Clifford bundle. The corresponding action is denoted byγ. By an operator of Dirac type
we mean any odd first-order differential operatorD acting on the module of sectionsΓ(ξF)

such thatD2 is a generalized Laplacian, i.e. [D, [D, f ]] = ±2gM(df,df) for allf ∈ C∞(M)

(see, e.g., Chapter 3.3 in[2]). LetD(ξF) be the affine set of all operators of Dirac type which
are compatible with the Clifford actionγ, i.e. [D, f ] = γ(df). The appropriate vector space
is given byΩ0(M,End−(E)), whereE =: S⊗EF is the total space of the fermion bundle.
We also denote byA(ξF) the affine set of all (associated) connections onξF. The correspond-
ing vector space is given byΩ1(M,End+(E)). In general, one hasD(ξF) � A(ξF)/Ker(γ).
Thus, there is a whole class [A] of connections on the fermion bundle corresponding to each
Dirac type operatorD. However, there is a distinguished class of connections on the fermion
bundle that is constructed as follows: an operatorD ∈ D(ξF) is called of simple type if its
Bochner–Laplacian∆D is defined by a Clifford connectionA ∈ ACl(ξF) ⊂ A(ξF). Here,
ACl(ξF) denotes the affine subset of Clifford connections on the fermion bundle. They are
characterized by the covariant derivatives∂A that fulfil [∂A,X, γ(a)] = γ(∂Cl

X a) for all sec-
tionsa ∈ Γ(ξCl) and tangent vector fieldsX ∈ Γ(τM). Here,∂Cl is the covariant derivative
that is defined by the canonical connection on the Clifford bundleξCl. In the case of a
twisted spinor bundle Clifford connections are tensor product connections and thus are pa-
rameterized by Yang–Mills connections onζF. It can be shown thatD is of simple type iff it
reads (cf.[1,6])

D ≡ /∂A,φ = /∂A + γ5 ⊗ φ, (6)

whereγ5 is the grading operator onξS andφ ∈ Ω0(M,End−(EF)).
Of course, any twisted Spin-Dirac operator/∂A =: γ ◦ ∂A is of simple type. However, the

most general Dirac operator of simple type on the fermion bundle (more general: on any
“twisted” Clifford module bundle) is given by(6). Notice that these more general Dirac
operators exist only ifζF is Z2-graded. The connection class of a Dirac operator of simple
type has a natural representative. The corresponding covariant derivative reads

∂A,φ = ∂A + ξ ∧ (γ5 ⊗ φ). (7)

Here,ξ ∈ Ω1(M,End−(E)) is the canonical one form that fulfils the following criteria:
(a) it is covariantly constant with respect to every Clifford connection; (b) it defines a right
inverse of the Clifford actionγ (cf. [6]).

Definition 3.1. Let (P(M,G), ρH, VH) be the data of a Yang–Mills–Higgs gauge theory
and letξF be the fermion bundle with respect to(P(M,G), ρF,S). A linear mapping

GY : Γ(ξH) → Γ(ξEnd−EF ), ϕ �→ φY =: GY(ϕ), (8)
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such thatGY(ϕ)
† = −GY(ϕ) is called a “Yukawa mapping”. A Dirac operator of simple

type

DY =: /∂A + γ5 ⊗ φY (9)

is called a “general Dirac–Yukawa operator”. Moreover, if(Q, ι) is a vacuum that sponta-
neously breaks the gauge symmetry, then the Hermitian section

−iD =: −iGY(V ) (10)

−iD ≡
(

0 MF

M
†
F 0

)
(11)

is called the “fermionic mass matrix”.

Clearly, a necessary condition for the existence of a Yukawa mapping is that the repre-
sentationρH and the fermionic representationρF are not independent of each other. For
instance, in the case of the (minimal) Standard Model the existence of(8) is equivalent to
the validity of the well-known relations between the “hyper-charges” of the leptons, the
quarks and the Higgs boson (see, e.g.[6]). The constants which parameterize the mapping
GY are usually referred to as “Yukawa coupling constants”.

In this section we have seen how the notion of vacuum (pairs) can be used to consider the
fermionic mass matrix as a globally defined (odd) operator acting on the states of a fermion
that is geometrically defined by the data(P(M,G), ρF,S). In the next section we will show
how the fermionic mass matrixD (together with the (pseudo) metricgM) defines a canonical
connection on the “reduced” fermion bundle. A necessary condition for this connection to be
flat is that the (almost) “free fermions” are massless. Moreover, the fermionic mass matrix
will provide us with a geometrical interpretation of the “minimal coupling” in terms of
the physically intuitive notion of “fluctuating vacua”. The main feature of this geometrical
interpretation is that, besides the Yang–Mills boson, the minimal coupling naturally includes
the gravitational field and the Higgs boson.

4. Dirac–Yukawa operators as fluctuating vacua

The Yukawa mapping(8) permits us to consider a section of the Higgs bundle (i.e. a state
of the Higgs boson) as an (odd) endomorphism acting on the fermion bundle. In particular,
a vacuum pair(Θ,V) defines a Dirac–Yukawa operator

/∂D =: /∂ + γ5 ⊗D (12)

acting on sections of thereduced fermion bundleξF,red =: ξS ⊗ ζF,red, with ζF,red defined
by

πF,red : EF,red =: Q ×ρF,red C
NF →M, Z = [(q, z)] �→ πQ(q). (13)
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Here,ρF,red =: ρF|H. Notice thatξF,red � ξF. Thus, a section of the reduced fermion bundle
can be considered as a state of the fermion that refers to a particular vacuum (pair).4

As a consequence, a vacuum pair defines a natural non-flat connection on the reduced
fermion bundle. This connection is defined by theDirac–Yukawa operator in the vacuum
state(12). The appropriate covariant derivative reads

∂D =: ∂ + ξ ∧ (γ5 ⊗D). (14)

The (total) curvature onξF,red, which is defined by(gM,Θ,V), is given by5

FD = /R+ m2
Fξ ∧ ξ, (15)

where/R denotes the lifted (pseudo)Riemannian curvature tensor with respect togM and
imF =: γ5 ⊗D.

The relative curvatureFE/SD = m2
F ξ ∧ ξ on the reduced fermion bundle is thus defined

by the (square of the) mass matrix of the fermion with respect to the chosen vacuum (pair).
Like in the case of the bosonic mass matrices we have the following lemma.

Lemma 4.1. The spectrum of the fermionic mass matrix is constant and only depends on
the orbit of the minimumz0 of a general Higgs potential. Moreover, the mass matrix lies
within the commutant of the invariance group of the vacuum chosen. Hence, the reduced
fermion bundle splits into the Whitney sum of the eigenbundles of the fermionic mass matrix,
i.e.

ξF,red = ⊕
m2∈spec(m2

F)

ξ
F(m2) , (16)

whereξ
F(m2) =: ξ

F,L(m2) ⊕ ξ
F,R(m2) .

Proof. The argument is very much the same as in the case of the bosonic mass matrices.
It relies on the fact that, independently of the vacuum(Q, ι), the corresponding vacuum
section readsV(x) = [(ι(q), z0)]|q∈π−1

Q (x)
. Thus, the spectrum of the fermionic mass matrix

is independent ofx ∈M. Of course, if two minimaz0, z′
0 of a given general Higgs potential

VH are on the same orbit, then the corresponding vacua are equivalent. As a result, the
spectrum ofm2

F only depends on the orbit of some minimum. By the very construction of
the fermionic mass matrix we have [D, ρF(h)] = 0 for allh ∈ H, such thatH � I(z0). Since
mF ∈ Ω0(M,End−(E)) is constant on the reduced fermion bundle one can decompose the

latter with respect to the eigenbundles ofM
†
FMF andMFM

†
F . �

For fixedm2 ∈ spec(m2
F) the Clifford module bundleξ

F(m2) is regarded as the geometrical
analogue of analmost free fermion of mass m. Here, “almost” refers to the circumstance

4 This is analogous to the reduced tangent bundle of an O(2n)-reduction of the frame bundle ofM: a local frame
corresponds to 2n locally linear independent sections of the tangent bundleτM that are orthonormal with respect
to the chosen reduction.

5 We would like to point out that all of this can also be defined without assuming the existence of a spin structure.
Thus, it is the gravitational field together with the vacuum (pair) that counts and not so much the spin structureS.
At least, this holds true as long as the notion of anti-particles is not taken into account.
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that neither the connectionΘ, nor the reduced representationρF,red is trivial, in general.
Therefore, a non-trivial vacuum together with the topology of space–time may give rise
to a non-trivial holonomy group analogously to the well-known Aharonov–Bohm effect.
Notice that, if the spectrum of the fermionic mass matrix is non-degenerated, thenξF,red
decomposes into the Whitney sum of the tensor product of the spinor bundle and appropriate
Hermitian line bundles.

In what follows we will rewrite a general Dirac–Yukawa operator in terms of a “fluctua-
tion” of the vacuum at hand. For this let us call to mind the definition of the latter (cf.[8]).

Let (Θ,V) be a vacuum pair that spontaneously breaks a Yang–Mills–Higgs gauge the-
ory that is defined by the data(P(M,G), ρH, VH). We call a one-parameter family of
Yang–Mills–Higgs pairs(At, ϕt) ∈ A(ξH)×Γ(ξH) (0 ≤ t ≤ 1) afluctuation of the vacuum
if there is a Yang–Mills–Higgs pair(A, ϕ), such thatAt = Θ+ t(A−Θ) andϕt = V+ tϕ,
whereA is supposed to be associated to a non-reducible connection onP(M,G) andϕ is
supposed to be in the “unitary gauge”, i.e.ι∗ϕ ∈ Γ(ξH,phys). Here, we make use of the fact
that the reduced Higgs bundle, when considered as a real vector bundle, decomposes into
the Whitney sum

ξH,red = ξG ⊕ ξH,phys (17)

of two real sub-vector bundles representing the Goldstone and the physical Higgs boson
(cf. loc sit).

By identifying a connection with its connection form we may write a fluctuation of the
canonical Dirac–Yukawa operator/∂D as follows:

DY,t =: /∂D + t /Afl, (18)

where the “fluctuation” reads:/Afl =: γ(A − Θ) + γ5 ⊗ GY(ϕ). We stress that the zero
order operatorDY − /∂D defines a fluctuation of the vacuum iff the unitary gauge exists.
This holds true, e.g., in the case of rotationally symmetric Higgs potentials, like in the
(minimal) Standard Model (see again loc sit). Therefore, every Dirac–Yukawa operator on
the fermion bundle can be regarded as a fluctuation of the canonical Dirac–Yukawa operator
on the reduced fermion bundle, provided that the unitary gauge exists. Notice that either
of the two terms on the right-hand side of(18) transform gauge covariantly with respect to
the invariance group of the vacuum. The sum of both, however, is covariant with respect
to the original gauge groupG. In other words: the fluctuation/Afl of the vacuum makes the
canonical Dirac–Yukawa operator/∂D on the (reduced) fermion bundle alsoG-covariant.

Since the Dirac–Yukawa operator

i/∂D ≡ i/∂ − mF (19)

is the geometrical analogue of Dirac’s original first-order operator i/∂ − m, the fluctuation
(18) might be regarded as a geometrical variant of what is usually referred to as “minimal
coupling”. In the case at hand, however, the minimal coupling(18) naturally includes the
gravitational field and the states of the Higgs boson. We stress that on the basis of general
relativity (without an a priori cosmological constant) it would be inconsistent to assume
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a non-trivial fermionic mass matrix together with a trivial gravitational field.6 Thus, a
non-trivial ground state of the Higgs boson yields a non-trivial gravitational field, in general.

In this section we have presented a physically intuitive interpretation of a geometrically
distinguished class of Dirac-type operators.7 This interpretation in turn permits a differ-
ent geometrical interpretation of minimal coupling with the basic feature of including the
Higgs boson and the gravitational field. From a geometrical perspective the back and forth
of both interpretations may be most transparently summarized by the canonical isomor-
phism between the fermion bundle and the reduced fermion bundle and the fact that the
latter decomposes into the eigenbundles of the fermionic mass matrix. Of course, these
identifications depend on the vacuum (pair) only up to gauge equivalence.

So far the three datasets(M, gM), (P(M,G), ρH, VH) and(P(M,G), ρF,S) have been
assumed to be given. Moreover, these sets are connected only by a Yukawa mapping(8). In
our final section we want to indicate how to connect these sets by postulating a “universal
Lagrangian density” that is naturally defined onD(ξF).

5. Dirac potentials and Lagrangians

In this paper we consider a fermion as a geometrical object that is defined by the data
(P(M,G), ρF,S), where(M, gM) is supposed to be given. With respect to this setup there
is a distinguished class of first-order differential operators acting on the states of the fermion.
As an additional input we considered the data(P(M,G), ρH, VH) that geometrically defines
a Yang–Mills–Higgs gauge theory. In order to combine both datasets we introduced the
Yukawa mapping and thereby a specific class of Dirac operators of simple type called
general Dirac–Yukawa operators. In fact, the Yukawa mapping generalizes what is known
in physics as “Yukawa coupling”. If the Yang–Mills–Higgs gauge theory is spontaneously
broken, then the fermion decomposes into almost free fermions. Each of these fermions
is geometrically represented by a non-flat Clifford module bundle, where the curvature is
determined by the gravitational field together with the mass of the free fermion in question.
However, since the (pseudo) metric structure has been fixed right from the beginning, these
two contributions to the total curvature of the fermion bundle are thus far independent of
each other. Of course, when seen from a physical perspective, this seems unsatisfying. One
may expect that the masses of the fermions give a contribution to the gravitational field. The
most natural way to achieve this is the following construction, which naturally incorporates
the dynamics of the gravitational field in the geometrical picture presented here. For this
we introduce the followinguniversal Lagrangian mapping:

L : D(ξF) → Ω2n(M), D �→ ∗tr VD. (20)

We call the zero-order operatorVD =: D2−∆D ∈ Ω0(M,End(E)) theDirac potentialasso-
ciated withD. It is fully determined by the Dirac-type operator in question and can explicitly

6 Of course, this should not be confounded with the common assumption, e.g., in particle physics, of anegligible
contribution of the gravitational field.

7 For instance, Dirac operators of simple type are fully characterized by their Bochner–Lichnerowicz–
Weitzenböck decomposition, see, e.g.[1]. Moreover, as already mentioned they constitute the biggest class of
Dirac-type operators such that their connection classes have a canonical representative.
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be calculated, for instance, by using the generalized Bochner–Lichnerowicz–Weitzenböck
decomposition formula (see Eq. (3.13) in[1]). We mention that the Dirac potential gener-
alizes the Higgs potential, for it can be shown that (at least with respect to the Euclidean
signature) the Lagrangian of a Yang–Mills–Higgs gauge theory can be recovered from an
appropriate Dirac-type operator (see[6]). In this case, however, one has to take into account
anti-particles as well (see[7]).

In the case of the canonical Dirac–Yukawa operator/∂D one obtains the following La-
grangian density:

L(/∂D) = ∗tr(1
4rM + m2

F). (21)

Here,rM ∈ C∞(M) is the scalar curvature with respect to an appropriate O(2n)-reduction
of the (oriented) frame bundle ofM. As a consequence, space–time must be an Einstein
manifold, where the gravitational field is now dynamically determined by the masses of
the almost free fermions. Moreover, the mass of an almost free fermion also determines its
curvature. In other words: in the ground state both the geometry of space–time and of the
(reduced) fermion bundle is determined by the fermionic masses. We summarize this by
saying that the “fermionic vacuum” gives rise to a Lagrangian of the form

L(/∂D) ∼ 〈m2
F〉µM (22)

with 〈m2
F〉 =: (1/NF)

∑NF
k=1m

2
k andµM the appropriate volume form determined by the

fermionic mass.
Of course, since the Lagrangian(22) is fully determined by the spectrum of the fermionc

mass matrix, it is invariant with respect to both the gauge group of general relativity (i.e. the
group of volume preserving automorphisms of the oriented frame bundle) and to the invari-
ance group of the vacuum. Moreover, it only depends on the orbit of some minimum and
not of the vacua with respect to this minimum. Therefore, the Lagrangian of the fermionic
vacuum is indeed a spectral invariant.

6. Summary and outlook

We have presented a geometrical setup permitting a geometrical interpretation of the
fermionic masses. Moreover, we have shown how the fermionic mass determines the ge-
ometry of space–time and that of the Clifford module bundle which geometrically represents
almost free fermions. The fact that the spectral invariant(22) of the fermionic vacuum is
proportional to the mean value of the fermionic masses is clearly due to the circumstance
that the fermion bundle breaks into a Whitney sum with respect to any given vacuum.
This splitting geometrically describes what is usually referred to as “particle multiplet”.
With respect to a “linear fluctuation” of a vacuum (pair) the canonical Dirac–Yukawa op-
erator becomes covariant with respect to the full gauge group. However, in this case the
corresponding canonical Lagrangian determines neither the dynamics of the Higgs boson,
nor that of the gauge boson. Moreover, the appropriate Lagrangian reduces to that of the
fermionic vacuum. For this it might be more natural to consider a “quadratic fluctuation”
of a vacuum. As we have mentioned before, in this case the Lagrangian mapping yields (up



436 J. Tolksdorf / Journal of Geometry and Physics 48 (2003) 426–437

to a constant) the bosonic Lagrangian of the Standard Model with gravity included. No-
tice that for dim(M) = 4 there are no “higher fluctuations” of the vacuum. Moreover, by
geometrically incorporating the notion of anti-particles (i.e. a real structure) the quadratic
fluctuations give rise to the same dynamics for the fermions as the linear fluctuations of
the vacuum do. This has been discussed, e.g, in[7] for the case of the Euclidean signature.
The main reason for using the Euclidean signature was that we are dealing with a univer-
sal action instead of a Lagrangian. However, when gravity is taken into account, the latter
seems more appropriate since a Lagrangian is a density and thus a purely local object. And
because it is a density, the signature ofgM does not matter. Moreover, Clifford module
bundles always refer to some Clifford bundle overM. But this in turn obviously refers to
some chosen O(2n)-reduction of the frame bundle ofM, i.e. to some fixedgM. However,
whengM is physically interpreted as a gravitational field, it cannot be fixed a priori, for it
has to satisfy, e.g., Einstein’s equation. This is obviously a dilemma one always has to face
in if gravity is taken into account. The philosophy of the paper at hand with respect to the
Lagrangian mapping(20)is as follows: the field equations determined by the corresponding
Lagrangian are considered as “constraints” of how to glue together the local pieces to give
rise to global geometrical objects like, e.g., the fermion bundle. We consider this interpre-
tation of the Euler–Lagrange equations to hold true, especially in the case of the Einstein
equation.

Interestingly, there are certain parallels between the geometrical setup presented here
and what is called “almost commutative models” in the literature. In particular, the canon-
ical Dirac–Yukawa operator corresponds to the “total Dirac operator” andD to the “in-
ternal Dirac operator” in the Connes–Lott description of the Standard Model within the
frame of A. Connes’ non-commutative geometry (see, e.g.[3] or [4]). Like in the case
of the Connes–Lott model one also has a “fermion doubling” in the geometrical frame
presented here. This still has to be carefully analyzed, for we can perhaps work with the
physical signature ofgM. Concerning quantization it seems challenging to try to under-
stand what it geometrically means to “quantize” the above-mentioned constraints. This,
of course, is still an open question and has not been addressed in this paper. Instead, the
main objective here was to explore the geometrical meaning of the fermionic “mass without
mass”.
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